Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4657, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949138

RESUMEN

Prunus serotina Ehrh. is an alien invasive neophyte widespread in European forests. So far, no effective methods of its elimination have been developed. For this reason, the aim of our study was to determine how herbicides affect the morphological characteristics of pollen grains. This knowledge may be crucial to control this invasive species. The current study was carried out in a research area of 2.7 ha located in the Zielonka Forest near Poznan, Poland (N 52°31'58.016″, E 17°05'55.588″). We tested morphological differences among ten features of P. serotina pollen, based on the samples collected from 15 control trees compared to the 50 trees treated with five different herbicides. In total 1950 pollen grains were measured. We confirmed the adopted hypotheses of long-term herbicide influence on P. serotina pollen. Pollen grains from the control trees had a longer equatorial axis, were more elongated in shape and had the largest range of exine thickness compared to the pollen from the herbicide-treated samples. Exine thickness in the control sample was on average 0.74 µm, ranging from 0.42 to 1.19 µm. The average values and the ranges of this trait in the samples treated with herbicides were larger (e.g. average exine thickness was from 0.90 to 0.95 µm). There were differences in the P/E ranges of variability between the control and herbicide-treated samples. In the control sample the P/E ratio was 1.32-2.04 and elongated forms of pollen shapes prevailed, while in the herbicide-treated samples it ranged from 1.03 to 1.47. The share of deformed pollen grains in the herbicide-treated samples was lower than expected, ranging from 8.7 to 25.3%, while in the control samples it was 6%. Logo and Mustang turned out to be the most effective among the herbicides used in the described research. The two used application methods were found to have an effect on pollen quality.


Asunto(s)
Herbicidas , Especies Introducidas , Polen , Prunus avium , Control de Malezas , Herbicidas/toxicidad , Polen/efectos de los fármacos , Polen/ultraestructura , Prunus avium/anatomía & histología , Prunus avium/efectos de los fármacos , Bosques , Control de Malezas/métodos , Microscopía
2.
Biol Futur ; 72(4): 489-495, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34554494

RESUMEN

Tradescantia spathacea Sw. (Commelinaceae) is widely cultivated as an ornamental and medicinal plant in Southeast Asia, and its pharmacological properties are well known. On the other hand, this plant species is classified as an invasive weed in some countries. As a noxious weed, T. spathacea has been reported to disrupt the growth of native plants. However, no study has reported on its allelopathic activity. Thus, we investigated the allelopathic property and inhibitory substance of T. spathacea. The extracts of T. spathacea significantly inhibited the shoots and roots of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), Italian ryegrass (Lolium multiflorum Lam.), and timothy (Phleum pratense L.) at concentrations ≥ 3 mg dry weight (D.W.) equivalent extract/mL. As the extract concentration increased, the growth of the shoots and roots decreased. The I50 values of the test plant shoots and roots were 11.6-72.4 and 5.4-19.5 mg D.W. equivalent extract/mL, respectively. The extracts were purified by column chromatography, and an inhibitory substance was separated, which inhibited the shoots and roots of cress to 18.8 and 11.6% of control growth, respectively. The results of present findings indicate that T. spathacea extracts possess an allelopathic property, and its inhibitory substance may contribute this activity.


Asunto(s)
Alelopatía/fisiología , Tradescantia/metabolismo , Control de Malezas/normas , Extractos Vegetales/análisis , Tradescantia/enzimología , Control de Malezas/métodos
3.
Cells ; 10(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572034

RESUMEN

The global population is increasing day by day. To meet the food demand for such a huge number of people, crop production must increase without damaging the environment, and to prevent synthetic chemical herbicides from polluting the environment, controlling weeds using bioherbicides is essential. Accordingly, using phytotoxic substances obtained from plants for biological weed management has attracted attention. The plant Albizia richardiana possesses phytotoxic compounds that have been previously recorded. Hence, we have conducted this research to characterize more phytotoxic compounds in Albizia richardiana. Aqueous methanolic extracts of Albizia richardiana plant significantly restricted the growth of the examined plants lettuce and Italian ryegrass in a species- and concentration-dependent manner. Three active phytotoxic compounds were isolated through various chromatographic methods and identified as compound 1, 2, and 3. Compound 3 exhibited stronger phytotoxic potentials than the other two compounds and significantly suppressed the growth of Lepidium sativum (cress). The concentration of the compounds required for 50% growth reduction (I50 value) of the Lepidium sativum seedlings ranged between 0.0827 to 0.4133 mg/mL. The results suggest that these three phytotoxic compounds might contribute to the allelopathic potential of Albizia richardiana.


Asunto(s)
Albizzia/química , Lepidium sativum/crecimiento & desarrollo , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Malezas/crecimiento & desarrollo , Control de Malezas/métodos , Herbicidas/farmacología , Lepidium sativum/efectos de los fármacos , Malezas/efectos de los fármacos
4.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361785

RESUMEN

Even today, weeds continue to be a considerable problem for agriculture. The application of synthetic herbicides produces serious environmental consequences, and crops suffer loss of their activity due to the appearance of new resistant weed biotypes. Our aim is to develop new effective natural herbicides that improve the problem of resistance and do not harm the environment. This work is focused on a bioassay-guided isolation and the characterization of natural products present in Moquiniastrum pulchrum leaves with phytotoxic activity and its preliminary application in weeds. Moquiniastrum pulchrum was selected for two reasons: it is an abundant species in the Cerrado region (the second most important ecosystem in Brazil, after the Amazon)-the explanation behind its being a dominant species is a major focus of interest-and it has traditional employment in folk medicine. Six major compounds were isolated in this plant: one flavone and five diterpenes, two of which are described for the first time in the literature. Four of the six compounds exhibited phytotoxic activity in the bioassays performed. The results confirmed the phytotoxic potential of this plant, which had not been investigated until now.


Asunto(s)
Asteraceae/química , Agentes de Control Biológico/toxicidad , Diterpenos/toxicidad , Flavonas/toxicidad , Herbicidas/toxicidad , Malezas/efectos de los fármacos , Control de Malezas/métodos , Bioensayo , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Productos Agrícolas/crecimiento & desarrollo , Diterpenos/química , Diterpenos/aislamiento & purificación , Flavonas/química , Flavonas/aislamiento & purificación , Herbicidas/química , Herbicidas/aislamiento & purificación , Humanos , Estructura Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Malezas/crecimiento & desarrollo
5.
Sci Rep ; 11(1): 9886, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972648

RESUMEN

The weeds are important in agricultural and livestock areas because these plants can cause several damages, especially in the yield. The herbicide pulverization for weed control is the most used, but the efficiency of the control can be dependent the several factors, for example, the correct chose the herbicide and the mixture or not with adjuvant. This study aimed to evaluate the contact angle of herbicide solution droplets associated with adjuvant when deposited on the leaf surface of different weed species and their relationship with chemical control. For the contact angle experiment, the design was completely randomized, with four repetitions, while for the control experiment, a randomized block design was used, both experiments were arranged in a factorial (4 × 2 + 1) design. Factor A corresponded to four spray solutions containing the herbicide no addition of adjuvants and herbicide associated with adjuvants (vegetable oil, mineral oil, and lecithin), factor B to two herbicide dosages, and additional treatment corresponded to water. The contact angle was determined in six weed species: Crotalaria incana, Lantana camara, Ipomoea grandifolia, Asclepias curassavica, Sida obtusifolia, and Ricinus communis, on the adaxial and abaxial surface of each species, and an artificial surface. For the weed control experiment was used two weed species: C. incana and L. camara. The multivariate analysis allowed the understanding of the behavior of the contact angle of the different groups on the natural and artificial surfaces, due to the formation of factors. For all plants, except for the abaxial surface of I. grandifolia and the adaxial surface of A. curassavica, the association of herbicide and adjuvants reduced contact angle on the surfaces. The chemical control resulted in an indirect relation with contact angle, where smaller contact angles of the herbicide solution resulted in a higher percentage of plant intoxication. Therefore, for this situation, it is recommended to use the herbicide aminopyralid + fluroxypir associated with lecithin.


Asunto(s)
Productos Agrícolas/parasitología , Herbicidas/administración & dosificación , Malezas/efectos de los fármacos , Control de Malezas/métodos , Hojas de la Planta
6.
J Environ Sci Health B ; 56(1): 16-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33048609

RESUMEN

The present study investigated integrated effects of two allelopathic plant water extracts (WE) (Ambrosia artemisiifolia [AMBEL] and Xanthium strumarium [XANST]) and a herbicide (mesotrione) on morphological (height and fresh weight of plants) and physiological (pigments content) parameters of Abutilon theophrasti and Chenopodium album. Also, the study aimed to identify the main components of AMBEL and XANST WE and to evaluate their potential allelopathic effects. Of the 18 investigated compounds, 13 were detected in both tested WE, and p-coumaric acid was the leading component in AMBEL, while quinic acid was the predominant component of XANST. The WE of both weed species and their mixtures with the herbicide exhibited more powerful allelopathic effects on fresh weight and content of pigments than on the height of A. theophrasti and C. album. The results showed that all measured parameters of both weeds were inhibited in treatments with mesotrione and its mix with AMBEL and XANST WE. The data revealed a highly significant difference in effects (P < 0.05) between control weeds and those treated with AMBEL WE and mesotrione, where the inhibition of fresh weight was over 90%, while the inhibition of pigments content exceeded 80%, and plant height was inhibited by over 70%.


Asunto(s)
Alelopatía , Herbicidas/farmacología , Extractos Vegetales/farmacología , Control de Malezas/métodos , Ambrosia/química , Chenopodium album/efectos de los fármacos , Ciclohexanonas/farmacología , Malvaceae/efectos de los fármacos , Malezas/efectos de los fármacos , Agua/química , Xanthium/química
7.
Food Chem ; 343: 128474, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33172754

RESUMEN

Viticultural practices to control the undervine environment have relied on chemical herbicides. Herbicides usage has resulted in resistance by weeds, alterations in soil environments, as well as not meeting the needs of the organic market. Consequently, black and white weedmat was utilized to manage the undervine area over multiple vintages and its influence on the resultant wines examined. Apart from a difference in juice soluble solids, there was no impact on grape yield. In the 2017 vintage, black weedmat wines had the largest variation in aromatic profile when compared to control; additionally white weedmat was more closely related to the control. These differences had disappeared in the 2018 vintage with all wines having similar aromatic profile concentrations. Trained sensory panel could not discriminate treatment effects on wine flavor and aroma for either vintage. Ultimately, these findings support the use of weedmats in the viticulture setting to eliminate herbicide usage.


Asunto(s)
Herbicidas , Vitis/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/análisis , Control de Malezas/métodos , Vino , Adulto , Humanos , Persona de Mediana Edad , Nueva Zelanda , Odorantes/análisis , Gusto , Vitis/química , Vino/análisis
8.
Sci Rep ; 10(1): 18833, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139789

RESUMEN

The adoption of dicamba-tolerant soybean varieties has increased the concern and demand for new drift and volatility reduction technologies. Potential spray nozzles and adjuvants should be studied to determine its effects on drift and volatility of dicamba tank-mixtures. The objective of this study was to evaluate physicochemical characteristics of spray solutions containing dicamba; to analyze droplet size effect with air induction nozzles; and to assess dicamba volatilization on soybean plants with a proposed methodology. Treatments included dicamba only and mixtures with herbicides and adjuvants. Dicamba mixed with lecithin + methyl soybean oil + ethoxylated alcohol adjuvant had the greatest efficacy potential among treatments considering tank-mixture pH, surface tension, contact angle and droplet size. The MUG11003 nozzle produced the coarsest droplet size and was better suited for drift management among nozzle types. The proposed volatilization methodology successfully indicated dicamba volatilization in exposed soybean plants and among the evaluated treatments, it showed greater volatilization for dicamba with glyphosate + lecithin + propionic acid adjuvant.


Asunto(s)
Adyuvantes Farmacéuticos , Fenómenos Químicos , Productos Agrícolas , Dicamba/administración & dosificación , Dicamba/química , Glycine max , Herbicidas/administración & dosificación , Herbicidas/química , Control de Malezas/métodos , Alcoholes , Glicina/análogos & derivados , Concentración de Iones de Hidrógeno , Lecitinas , Tamaño de la Partícula , Propionatos , Soluciones , Aceite de Soja , Tensión Superficial , Volatilización , Glifosato
9.
J Chem Ecol ; 46(9): 871-880, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691372

RESUMEN

Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called 'suicidal germination' or the 'honey-pot strategy'. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds. In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne, Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.


Asunto(s)
Carthamus tinctorius/parasitología , Germinación/efectos de los fármacos , Raíces de Plantas/parasitología , Malezas/efectos de los fármacos , Control de Malezas/métodos , Alelopatía , Cromatografía Liquida , Lactonas/aislamiento & purificación , Lactonas/farmacología , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Orobanche/efectos de los fármacos , Orobanche/crecimiento & desarrollo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Exudados de Plantas/aislamiento & purificación , Exudados de Plantas/farmacología , Raíces de Plantas/química , Semillas/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Espectrometría de Masas en Tándem
10.
Pest Manag Sci ; 75(8): 2211-2218, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30672096

RESUMEN

BACKGROUND: Weed infestations reduce turfgrass aesthetics and uniformity. Postemergence (POST) herbicides are applied uniformly on turfgrass, hence areas without weeds are also sprayed. Deep learning, particularly the architecture of convolutional neural network (CNN), is a state-of-art approach to recognition of images and objects. In this paper, we report deep learning CNN (DL-CNN) models that are remarkably accurate at detection of broadleaf weeds in turfgrasses. RESULTS: VGGNet was the best model for detection of various broadleaf weeds growing in dormant bermudagrass [Cynodon dactylon (L.)] and DetectNet was the best model for detection of cutleaf evening-primrose (Oenothera laciniata Hill) in bahiagrass (Paspalum notatum Flugge) when the learning rate policy was exponential decay. These models achieved high F1 scores (>0.99) and overall accuracy (>0.99), with recall values of 1.00 in the testing datasets. CONCLUSION: The results of the present research demonstrate the potential for detection of broadleaf weed using DL-CNN models for detection of broadleaf weeds in turfgrass systems. Further research is required to evaluate weed control in field conditions using these models for in situ video input in conjunction with a smart sprayer. © 2019 Society of Chemical Industry.


Asunto(s)
Aprendizaje Profundo/estadística & datos numéricos , Redes Neurales de la Computación , Malezas/crecimiento & desarrollo , Control de Malezas/métodos , Cynodon/crecimiento & desarrollo
11.
Arq. Inst. Biol ; 86: e0542018, 2019. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1045996

RESUMEN

The use of adjuvants associated with herbicides aims at improving the performance of application and the consequent increase in the biological effect of the treatment. However, the sequence of product added to the sprayer tank can influence the phytosanitary spray solution. Thus, this study aimed to evaluate the control of Senna obtusifolia as a function of the sequence of addition of the herbicide aminopyralid + fluroxypyr and adjuvants in the preparation of spray solution. Two herbicide doses (1 and 2 L c.p. ha-1) associated with the adjuvants mineral oil (MO), silicone polyether copolymer (SIL), and a mixture of phosphatidylcholine and propionic acid (LEC), all in the proportion of 0.3% v v-1, with alternate addition to the spray solution to evaluate the effects of the preparation sequence. The spray solution volume considered was 150 L ha-1. Evaluations of spray solution stability were performed from the visual evaluation of homogeneity, electrical conductivity, and pH. The effect of treatment on S. obtusifolia control was measured using a scoring scale and dry matter. Correlation coefficients between the evaluations were also determined. No difference of the preparation sequence of spray solution was observed for stability, pH, and electrical conductivity, but an influence was observed on S. obtusifolia control, without changing dry matter accumulation. The treatment with the adjuvant LEC previously added to the herbicide provided a higher control rate at the highest dose, while the adjuvant SIL had the opposite effect.(AU)


O uso de adjuvantes associados a herbicidas visa melhorar o desempenho da aplicação e o consequente aumento do efeito biológico do tratamento. Porém, a ordem de adição dos produtos ao tanque do pulverizador pode trazer importantes influências à calda fitossanitária. Assim, o objetivo desta pesquisa foi avaliar o controle de Senna obtusifolia em função da sequência de adição do herbicida aminopiralide + fluroxipir e de adjuvantes no preparo das caldas. Foram utilizadas duas dosagens de herbicida (1 e 2 L p.c. ha-1), associadas aos adjuvantes óleo mineral (OM); copolímero de poliéter e silicone (SIL); mistura de fosfatidicolina e ácido propiônico (LEC), todos na proporção de 0,3% v v-1, com adição alternada à calda para avaliar os efeitos da sequência de preparo. O volume de calda considerado foi de 150 L ha-1. Foram realizadas avaliações da estabilidade da calda a partir da avaliação visual de homogeneidade, condutividade elétrica e pH. O efeito do tratamento no controle de S. obtusifolia foi mensurado por meio de uma escala de pontuação e pela massa seca. Também foram determinados os coeficientes de correlação entre as avaliações. Verificou-se que não houve diferença da sequência de preparo da calda para a estabilidade, o pH e a condutividade elétrica. Porém, a sequência de preparo influenciou o controle inicial de S. obtusifolia, sem efeito sobre a massa seca. O tratamento com o adjuvante LEC adicionado ao herbicida proporcionou maior taxa de controle na maior dosagem, enquanto o adjuvante de SIL teve o efeito oposto.(AU)


Asunto(s)
Adyuvantes Farmacéuticos/administración & dosificación , Senna/efectos de los fármacos , Control de Malezas/métodos , Herbicidas/administración & dosificación , Pastizales
12.
Molecules ; 23(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065174

RESUMEN

Piper methysticum (kava) root is known to possess promising weed suppressing activity. The present study was conducted to search for potent plant growth inhibitors from the root of this medicinal pepper plant. The ethyl acetate (EtOAc) extract exhibited the strongest reduction on growth of Raphanus sativus (radish) (IC50 shoot and root growth = 172.00 and 51.31 µg/mL respectively) among solvent extracts. From this active extract, nine potent growth inhibitors involved in the inhibitory activities of P. methysticum root were isolated, purified and characterized by column chromatography (CC), gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). The six fractions purified by CC included two flavanones: 5-hydroxy-4',7-dimethoxyflavanone (C1) and 5,7-dihydroxy-4'-methoxy-6,8-dimethylflavanone (matteucinol, C2) and six kavalactones: 5,6-dehydro-kavain (C3), a mixture of kavain and yagonin (C4), yagonin (C5) and dihydro-5,6-dehydrokavain, 7,8-dihydrokavain, dihydromethysticin and methysticin (C6). The amounts of 5-hydroxy-4',7-dimethoxyflavanone, matteucinol, 5,6-dehydrokavain and yangonin were 0.76, 2.50, 2.75 and 2.09 mg/g dry weight (DW), respectively. The two flavanones C1 and C2 exhibited the strongest inhibition on shoot elongation (IC50 = 120.22 and 248.03 µg/mL, respectively), whilst the two kavalactone mixtures C4 and C6 showed the highest suppression on root growth of R. sativus (IC50 = 7.70 and 15.67 µg/mL, respectively). This study was the first to report the purification and inhibitory activities of the two flavanones 5-hydroxy-4',7-dimethoxyflavanone and matteucinol in P. methysticum root. The isolated constituents from P. methysticum root including the flavanones C1 and C2 and the mixtures C4 and C6 may possess distinct modes of action on plant growth. Findings of this study highlighted that the combinations of hexane-ethyl acetate by 9:1 and 8:2 ratios successfully purified flavanones and kavalactones in P. methysticum root.


Asunto(s)
Flavanonas/aislamiento & purificación , Herbicidas/aislamiento & purificación , Kava/química , Lactonas/aislamiento & purificación , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Malezas/efectos de los fármacos , Acetatos/química , Flavanonas/clasificación , Flavanonas/farmacología , Cromatografía de Gases y Espectrometría de Masas , Herbicidas/clasificación , Herbicidas/farmacología , Kava/metabolismo , Lactonas/clasificación , Lactonas/farmacología , Estructura Molecular , Extractos Vegetales/química , Reguladores del Crecimiento de las Plantas/clasificación , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Malezas/crecimiento & desarrollo , Plantas Medicinales , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Solventes/química , Control de Malezas/métodos
13.
Sci Rep ; 8(1): 7910, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785001

RESUMEN

QYR301, 1,3-Dimethyl-1H-pyrazole-4-carboxylic acid 4-[2-chloro-3-(3,5-dimethyl-pyrazol-1-ylmethyl)-4-methanesulfonyl-benzoyl]-2,5-dimethyl-2H-pyrazol-3-yl ester, is a novel HPPD-inhibiting herbicide and was evaluated to provide a reference for post-emergence (POST) application under greenhouse and field conditions. The crop safety (180 and 360 g active ingredient (a.i.) ha-1 treatments) experiment revealed that wheat, paddy, garlic and corn were the only four crops without injury at both examined herbicide rates. The weed control efficacy (60 and 120 g a.i. ha-1) experiment showed that QYR301 exhibited high efficacy against many weeds, especially weeds infesting paddy fields. Furthermore, it is interesting that both susceptible and multiple herbicide resistant Echinochloa crus-galli (L.) Beauv. and Echinochloa phyllopogon (Stapf) Koss, two notorious weed species in paddy field, remained susceptible to QYR301. Further crop tolerance results indicated that 20 tested paddy hybrids displayed different levels of tolerance to QYR301, with the japonica paddy hybrids having more tolerance than indica paddy hybrids under greenhouse conditions. Results obtained from field experiments showed that QYR301 POST at 135 to 180 g a.i. ha-1 was recommended to provide satisfactory full-season control of E. crus-galli and Leptochloa chinensis (L.) Nees and to maximize rice yields. These findings indicate that QYR301 possesses great potential for the management of weeds in paddy fields.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Echinochloa/crecimiento & desarrollo , Ésteres/farmacología , Resistencia a los Herbicidas , Herbicidas/farmacología , Malezas/crecimiento & desarrollo , Pirazoles/farmacología , Control de Malezas/métodos , Productos Agrícolas/efectos de los fármacos , Echinochloa/efectos de los fármacos , Ajo/efectos de los fármacos , Ajo/crecimiento & desarrollo , Efecto Invernadero , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Malezas/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
14.
PLoS One ; 13(3): e0194319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566039

RESUMEN

Salvia verbenaca (wild sage) is a commonly cultivated herbal medicine plant, which is native to the Mediterranean climate regions of Europe, Africa, Asia and the Middle East. However, it has become an invasive species in semi-arid and arid regions of southern Australia. Two varieties are present in this region, var. verbenaca and var. vernalis, each of which can be distinguished by differences in morphology and flowering period. Following trials to determine the optimum temperate regime for germination and response to light and dark, seeds of both varieties were tested for their response to variations in pH, moisture stress, salinity, and burial depth. The temperature and light trial was carried out using three different temperature regimes; 30/20°C, 25/15°C and 20/12°C, and two light regimes; 12 hours light/12 hours dark and 24 hours dark, with var. vernalis responding to relatively higher temperatures than var. verbenaca. The germination rate of neither species was significantly inhibited by complete darkness when compared to rates under periodic light exposure. Both varieties germinated at near optimum rates strongly to very strongly in all pH buffer solutions, from pH 5 to pH 10, but they responded most strongly at neutral pH. Var. vernalis showed slightly more tolerance to reduced moisture availability, moderate to strong salinity, and burial depth, compared to var. verbenaca. However, even a fairly shallow burial depth of 2 cm completely inhibited germination of both varieties. Thus, in circumstances where both varieties are present in a soil seedbank, var. vernalis could be expected to establish in more challenging conditions, where moisture is limited and salinity is 'moderate to high', implying that it is a more serious threat for invasive weed in conditions where crop plants are already challenged.


Asunto(s)
Aclimatación/fisiología , Clima Desértico/efectos adversos , Germinación/fisiología , Especies Introducidas , Malezas/fisiología , Salvia/fisiología , Agricultura/métodos , Concentración de Iones de Hidrógeno , Luz , Salinidad , Semillas/crecimiento & desarrollo , Suelo , Australia del Sur , Temperatura , Control de Malezas/métodos
15.
PLoS One ; 13(2): e0192872, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29438430

RESUMEN

In the worldwide search for new strategies in sustainable weed management, the use of plant species able to produce and release phytotoxic compounds into the environment could be an effective alternative to synthetic herbicides. Eucalyptus globulus Labill. is known to be a source of biologically active compounds responsible for its phytotoxic and allelopathic properties. Our previous results demonstrated the bioherbicide potential of eucalyptus leaves incorporated into the soil as a green manure, probably through the release of phytotoxins into the soil solution. Thus, the aims of this study were to understand the phytotoxicity of the eucalyptus leaves aqueous extract applied in pre- and post-emergence, and to identify and quantify its potentially phytotoxic water-soluble compounds. The effects were tested on the germination and early growth of the model target species Lactuca sativa and Agrostis stolonifera, and on physiological parameters of L. sativa adult plants after watering or spraying application. Dose-response curves and ED50 and ED80 values for eucalyptus aqueous extracts revealed pre-emergence inhibitory effects on both target species, effects being comparable to the herbicide metolachlor. While spraying treatment reduced the aerial and root biomass and increased the dry weight/fresh weight ratio of lettuce adult plants, watering application reduced protein contents and chlorophyll concentrations with respect to control, reflecting different modes of action depending on the site of phytotoxin entry. Via HPLC analyses, a total of 8 phenolic compounds (chlorogenic, two ρ-coumaric derivatives, ellagic, hyperoside, rutin, quercitrin, and kaempferol 3-O-glucoside) and other 5 low weight organic acids (citric, malic, shikimic, succinic and fumaric acids) were obtained from aqueous extract, the latter being identified for the first time in E. globulus. Despite some phytotoxic effects were found on lettuce adult plants, the use of eucalyptus aqueous extract would be discarded in post-emergence, whereas it was promising as a pre-emergence bioherbicide.


Asunto(s)
Eucalyptus/química , Herbicidas/química , Herbicidas/farmacología , Agrostis/efectos de los fármacos , Agrostis/crecimiento & desarrollo , Agrostis/metabolismo , Clorofila/metabolismo , Clorofila A , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Fenoles/administración & dosificación , Fenoles/química , Fenoles/farmacología , Pigmentos Biológicos/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Malezas/metabolismo , Control de Malezas/métodos
16.
Pest Manag Sci ; 74(5): 1050-1053, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-27991715

RESUMEN

Glyphosate-resistant (GR) sugar beet became commercially available to US sugar beet growers in 2008 and was rapidly adopted. Prior to the availability of GR sugar beet, growers would commonly make 3-5 herbicide applications. This often resulted in some crop injury, but was accepted to reduce the impact of weeds. In addition, non-GR sugar beet was cultivated 1-3 times and often followed by hand weeding. The introduction of GR sugar beet drastically reduced the complexity of weed management. Concerns about GR weeds in the United States also apply to sugar beet growers. Changes in weed management strategies will be required to keep this technology. Sugar beet is arguably one of the most suitable crops for GR technology because: (1) none of the herbicides registered for use in this crop was very effective without risking crop injury; (2) sugar beet cannot be grown in the same field year after year owing to disease concerns and thus requires a 3-4 year rotation; (3) pollen-mediated gene flow is negligible from the sugar beet crop because it is a biennial and harvested before it flowers; (4) the processing of harvested roots to extract the sucrose rapidly degrades the DNA in the extracted raw juice and subsequent refining so that no DNA is present in the finished sugar; (5) studies have shown that processed GR beet sugar is identical to non-GR beet sugar, as well as cane sugar. © 2016 Society of Chemical Industry.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Glicina/análogos & derivados , Resistencia a los Herbicidas , Herbicidas/farmacología , Control de Malezas , Beta vulgaris/genética , Glicina/farmacología , Resistencia a los Herbicidas/genética , Azúcares/análisis , Estados Unidos , Control de Malezas/métodos , Glifosato
17.
Plant Biotechnol J ; 15(12): 1493-1508, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28776914

RESUMEN

The availability of orthophosphate (Pi) is a key determinant of crop productivity because its accessibility to plants is poor due to its conversion to unavailable forms. Weed's competition for this essential macronutrient further reduces its bio-availability. To compensate for the low Pi use efficiency and address the weed hazard, excess Pi fertilizers and herbicides are routinely applied, resulting in increased production costs, soil degradation and eutrophication. These outcomes necessitate the identification of a suitable alternate technology that can address the problems associated with the overuse of Pi-based fertilizers and herbicides in agriculture. The present review focuses on phosphite (Phi) as a novel molecule for its utility as a fertilizer, herbicide, biostimulant and biocide in modern agriculture. The use of Phi-based fertilization will help to reduce the consumption of Pi fertilizers and facilitate weed and pathogen control using the same molecule, thereby providing significant advantages over current orthophosphate-based fertilization.


Asunto(s)
Agricultura/métodos , Fertilizantes , Fosfitos , Plantas/metabolismo , Transporte Biológico , Eutrofización , Fungicidas Industriales/farmacología , Ingeniería Genética , Herbicidas/química , Herbicidas/farmacología , Fosfatos/metabolismo , Fosfitos/farmacocinética , Fósforo/metabolismo , Células Vegetales/metabolismo , Plantas/genética , Plantas/microbiología , Plantas Modificadas Genéticamente , Control de Malezas/métodos
18.
Environ Monit Assess ; 189(3): 101, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28185156

RESUMEN

Wild turnip (Brassica rapa) is a common weed and a close relative to oilseed rape (Brassica napus). The Clearfield® production system is a highly adopted tool which provides an alternative solution for weed management, but its efficiency is threatened by gene transfer from crop to weed relatives. Crop-weed hybrids with herbicide resistance were found in the progeny of a B. rapa population gathered from a weedy stand on the borders of an oilseed rape (B. napus) imidazolinone (IMI)-resistant crop. Interspecific hybrids were confirmed by morphological traits in the greenhouse and experimental field, survival after imazethapyr applications, DNA content through flow cytometry, and pollen viability. The transference of herbicide resistance was demonstrated even in a particular situation of pollen competition between both an herbicide-resistant crop and a non-resistant crop. However, IMI resistance was not found in further generations collected at the same location. These results verify gene transmission from oilseed rape to B. rapa in the main crop area in Argentina where resistant and susceptible varieties are found and seed loss and crop volunteers are common. Hybridization, introgression, and herbicide selection would be associated with the loss of effectiveness of IMI technology.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/genética , Brassica rapa/efectos de los fármacos , Brassica rapa/genética , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Hibridación Genética , Imidazolinas/toxicidad , Argentina , ADN de Plantas/análisis , Monitoreo del Ambiente , Citometría de Flujo , Fenotipo , Plantas Modificadas Genéticamente , Polen/efectos de los fármacos , Semillas/efectos de los fármacos , Control de Malezas/métodos
19.
Ecotoxicology ; 25(2): 279-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26573685

RESUMEN

Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation.


Asunto(s)
Glicina/análogos & derivados , Herbicidas , Malezas , Control de Malezas/métodos , Biodiversidad , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Italia , Metales/análisis , Metales/metabolismo , Estaciones del Año , Suelo/química , Emisiones de Vehículos/análisis , Control de Malezas/instrumentación , Glifosato
20.
Toxicol Ind Health ; 32(3): 558-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24193044

RESUMEN

The present study was carried out for the assessment of physiological biosafety and effects of genetically modified (GM) canola on Avena sativa, which is a common weed plant of South Asia. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of A. sativa under sterilized conditions. The extracts were treated with 3%, 5%, and 10% concentrations of methanol. Results showed that the extract of GM canola increases the number of roots and root fresh weight. However, root length was significantly decreased. Similarly, a significant rate of increase was observed in shoot fresh weight and shoot length of A. sativa by treatment of GM canola. Emergence percentage, germination index, and emergence rate index show a significant effect of decrease when treated with GM canola.


Asunto(s)
Avena/efectos de los fármacos , Brassica rapa/química , Extractos Vegetales/farmacología , Malezas/efectos de los fármacos , Plantas Modificadas Genéticamente/química , Control de Malezas/normas , Germinación/efectos de los fármacos , Seguridad , Control de Malezas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA